050(E)

(JULY, 2009)

Time: 3.00 Hours]

[Maximum Marks: 100

Instructions:

- 1. Answer all the questions.
- 2. Write your answers according to the instructions given below with the questions.
- 3. Begin each **section** on a **new page**.

SECTION - A

Given below are 1 to 15 multiple choice questions. Each carries **one** mark. Write the letter (A), (B), (C) or (D) in your answer book of the alternative which you feel is the correct answer of the questions.

- 1. The origin be shifted to (-2, 3) so that the new co-ordinates of would be (3, -2).
 - (A) (-1, 1)

(B) (1, 1)

(C) (1, -1)

- (D) (-1, -1)
- 2. For all $a, b, c \in \mathbb{R}$, 2a + 3b + 5c = 0, the line ax + by + c = 0 passes through fixed point $(a^2 + b^2 \neq 0)$
 - (A) (2, 3)

(B) (-2, -3)

(C) $\left(\frac{-2}{5}, \frac{-3}{5}\right)$

- (D) $\left(\frac{2}{5}, \frac{3}{5}\right)$
- 3. Circle $x^2 + y^2 2ax 2ay + a^2 = 0$, $a \ne 0$
 - (A) passes through origin.
- (B) touches only X-axis.
- (C) touches only Y-axis.
- (D) touches both the axes.

- 4. One of the end point of the focal chord of Parabola $y^2 = 16x$ is $(\frac{1}{4}, 2)$, then the other end point is
 - (A) $\left(2, \frac{1}{4}\right)$

(B) $\left(\frac{1}{4}, -2\right)$

(C) (64, -32)

- (D) (-64, 32)
- 5. Equation of a tangent to $\frac{x^2}{3} \frac{y^2}{2} = 1$ and parallel to y = x is
 - $(A) \quad x y + 1 = 0$

 $(B) \quad x + y - 1 = 0$

(C) x - y + 2 = 0

- $(D) \quad x + y + 2 = 0$
- **6.** If $|\overline{x}| = |\overline{y}| = |\overline{x} \overline{y}|$, then $|\overline{x} + \overline{y}| = \dots$
 - (A) $\sqrt{3} \ \overline{x}$

(B) $\sqrt{3} |\bar{x}|$

(C) $3\bar{x}$

- (D) $3|\overline{x}|$
- 7. For a parallelogram ABCD, $\overrightarrow{AB} = \overline{a}$ and $\overrightarrow{BC} = \overline{b}$, then its area =
 - (A) $\frac{1}{2} | \overline{a} \times \overline{b} |$

- (B) $\left| \overline{a} \times \overline{b} \right|$
- (C) $\left| \left(\overline{a} + \overline{b} \right) \times \left(\overline{a} \overline{b} \right) \right|$
- (D) None of these
- 8. A plane cuts axes at A, B, C such that the centroid of $\triangle ABC$ is (1, 3, 1), the equation of this plane is
 - (A) $\frac{x}{3} + \frac{y}{1} + \frac{z}{3} = 3$

(B) $\frac{x}{1} + \frac{y}{3} + \frac{z}{1} = 3$

(C) 3x + 3y + z = 3

- (D) None of these
- 9. $x \in \mathbb{N}^*$ $(-2, \delta) \Rightarrow f(x) \in \mathbb{N}(9, 0.01)$, then the maximum value of δ is, where f(x) = 5 2x.
 - (A) 0.001

(B) 0.005

(C) 0.009

(D) None of these

050(E)

[18]

10. If $\frac{d}{dx} f(x) = g(x)$, then $\frac{d}{dx} \left(-\frac{1}{f(x)} \right) = \dots$

(A)
$$\frac{-1}{(f(x))^2}$$

(B)
$$\frac{1}{(f(x))^2}$$

(C)
$$\frac{-f(x)}{(g(x))^2}$$

(D)
$$\frac{g(x)}{(f(x))^2}$$

11. $\int \{\sin(\log x) + \cos(\log x)\} dx = \dots + c.$

(A) $x \sin(\log x)$

(B) $x \cos(\log x)$

(C) $\sin(\log x)$

(D) $\cos(\log x)$

12. $\int \frac{1}{\sqrt{\left(\log \frac{1}{2}\right)^2 - x^2}} dx = \dots + c.$

(A)
$$\sin^{-1}\left(\frac{x}{\log\frac{1}{2}}\right)$$

$$(B) \qquad -\sin^{-1}\left(\frac{x}{\log 2}\right)$$

(C)
$$\sin^{-1}\left(\frac{x}{\log 2}\right)$$

(D) None of these

13. $\int_{0}^{2a} \frac{f(x)}{f(x) + f(2a - x)} dx = \dots$

(A) a

 (\mathbf{B}) -a

(C) $\frac{a}{2}$

(D) $\frac{-a}{2}$

14. Degree of a differential equation $\left(\frac{d^2y}{dx^2}\right)^{\frac{2}{3}} = \left(y + \frac{dy}{dx}\right)^{\frac{1}{2}}$ is

 $(A) \quad 1$

(B)

(C) 3

(D) 4

- 15. A particle is projected vertically upward with a velocity of 24.5 m/sec., then velocity of that particle after 2 sec. is m/sec.
 - (A) 4.9

(B) -4.9

(C) -14.7

(D) 14.7

SECTION - B

Answer the following 16 to 30 questions. Each carries one mark.

- **16.** Find the incentre of the triangle whose vertices are $(\sqrt{3}, 1)$, (0, 0), (0, 2).
- 17. Obtain the location of point $(a \cos \alpha, a \sin \alpha)$ in the plane relative to a circle $x^2 + y^2 = r^2$, where $\alpha \in (-\pi, \pi], |a| < r, a \ne 0$.
- 18. There is a point on the Parabola $y^2 = 8x$ whose Y-coordinate is two times the X-coordinate. If this point is not the vertex of the Parabola, find that point.
- 19. Let L and L' be the feet of perpendicular drawn from the foci S and S' respectively to the tangent at any point P(x, y) of the ellipse $\frac{x^2}{9} + \frac{y^2}{16} = 1$, then find $SL \cdot S'L'$.

OR

Find the measure of eccentric angle of point $(-2, -2\sqrt{2})$ on the ellipse $2x^2 + y^2 = 16$.

- 20. If α , β , γ are the direction angles of the vector \overline{r} , then find the value of $\cos 2\alpha + \cos 2\beta + \cos 2\gamma$.
- **21.** Force $2\overline{i} + 2\overline{j} + 2\overline{k}$ is applied at B(1, 2, 3); find the torque around A(-1, 2, 0).
- **22.** Find the equation of the line through (4, 3, 2) and parallel to the line $\frac{x-10}{15} = \frac{y-2}{5} = \frac{z-1}{3}.$
- 23. If the position vectors of the end points of a diameter of a sphere are $4\bar{i}$ and $2\bar{j}$, find the Cartesian equation of the Sphere.

- **24.** The formula connecting the periodic time T and length l of a pendulum is $T = 2\pi \sqrt{l/g}$. If there is an error of 2% in measuring the length l, what will be the percentage error in T?
- **25.** Discuss the validity of Rolle's Theorem for $f(x) = x^{\frac{1}{4}}$, $x \in [-1, 1]$.

The radius of a right circular cone is constant. If there is an error δh in measuring its height, what will be the error in measurement of its volume?

- **26.** Evaluate : $\int \frac{e^x 1}{e^x + 1} dx$.
- **27.** Obtain the value of $\int_{0}^{\pi} \sin^{3} x \cdot \cos^{3} x \, dx$.

OR

If
$$\int_{n}^{n+1} f(x) dx = n^3$$
, then find the value of $\int_{-3}^{3} f(x) dx$.

- **28.** Obtain the differential equation representing the family of curves $y = a \cos^{-1} x + b$, where a and b are arbitrary constants.
- 29. A body projected in vertical direction attains maximum height 16 m. Find its initial velocity.
- 30. Range of a projectile is $\frac{4}{\sqrt{3}}$ times its maximum height $\frac{u^2 \sin^2 \alpha}{2g}$. Find measure of angle of projection.

SECTION - C

Answer the following questions from 31 to 40. Each carries TWO marks, as directed in the question.

31. The equation of a perpendicular bisector of \overline{AB} is 5x + 2y - 18 = 0, if A is (-3, 2); then find the co-ordinates of the midpoint of \overline{AB} .

OR

Find the co-ordinates of the foot of the perpendicular from A(a, 0) to the line

$$y=mx+\frac{a}{m}; \ m\neq 0.$$

32. Find the locus of point P such that the slopes of the tangents drawn from P to a Parabola have (i) constant sum (ii) constant non zero product.

Find the co-ordinates of the points of contact of the tangents drawn from (1, 5) to the Parabola $y^2 = 24x$.

- 33. If the difference between measures of the eccentric angles of P and Q is $\frac{\pi}{2}$ and if PQ cuts intercepts c and d on the axes, prove that $\frac{a^2}{c^2} + \frac{b^2}{d^2} = 2$.
- 34. Find the equation of a curve from every point of which the tangents to the Hyperbola $\frac{x^2}{144} \frac{y^2}{36} = 1$ intersect at right angles.

OR

If the chord of the Hyperbola joining $P(\alpha)$ and $Q(\beta)$ on the hyperbola subtends a right angle at the centre C(0, 0); prove that $a^2 + b^2 \sin \alpha \cdot \sin \beta = 0$.

- **35.** If $\overline{a} \neq \overline{0}$, $\overline{b} + \overline{c} \neq \overline{0}$ and $\overline{a} + \overline{b} + \overline{c} \neq \overline{0}$; show that \overline{a} , $\overline{b} + \overline{c}$, $\overline{a} + \overline{b} + \overline{c}$ are coplanar.
- **36.** The dot product with $\bar{i} + \bar{j} + \bar{k}$ of the unit vector having the same direction as the vector sum of $2\bar{i} + 4\bar{j} 5\bar{k}$ and $\lambda \bar{i} + 2\bar{j} + 3\bar{k}$ is 1, find λ .
- **37.** Find the equation of the sphere passing through the point O(0, 0, 0), A(-a, b, c), B(a, -b, c), C(a, b, -c).
- 38. If $y = \tan^{-1}\left(\frac{3-2x}{2+3x}\right)$, then find $\frac{dy}{dx}$.

If $y = (\cos^{-1} x)^2$, then prove that $(1 - x^2)y_2 - xy_1 = 2$.

39. Obtain the intervals in which function $f(x) = x^3 - 6x^2 - 36x + 2$ in increasing and decreasing.

40. Evaluate: $\int_{0}^{1} x^{2} (1-x)^{\frac{1}{2}} dx$

SECTION - D

Answer the following questions from 41 to 50, each carrying THREE marks as directed in the question.

41. If A is (-2, 1) and B is (1, -7); find a point on \overrightarrow{AB} such that $5\overrightarrow{AP} = 3\overrightarrow{AB}$.

If $P(at^2, 2at)$, $Q(\frac{a}{t^2}, \frac{-2a}{t})$ and S(a, 0) are three points, show that $\frac{1}{SP} + \frac{1}{SQ}$ is independent of t.

42. Find the co-ordinates of points which are at minimum and maximum distance from the point (-7, 2) on the circle $x^2 + y^2 - 10x - 14y - 151 = 0$.

OR

Find the equation of the circle that touches the Y-axis and passes through (-2, 1) and (-4, 3).

- **43.** Prove by using vectors that the perpendicular bisectors of the sides of a triangle are concurrent.
- **44.** Find the measure of the angle between two lines if their direction cosines l, m, n satisfy l + m + n = 0, $l^2 m^2 + n^2 = 0$.
- **45.** Obtain the foot of perpendicular, perpendicular distance and equation of perpendicular line from A(2, 3, 2) on $\bar{r} \cdot (1, -2, 1) = -5$.
- **46.** Find: $\lim_{n\to\infty} \sum_{r=1}^{n} \frac{1}{16r^2 + 8r 3}$.
- **47.** By using mean value theorem for $\log(1+x)$ in [0,x], prove that

$$0 < \frac{1}{\log(1+x)} - \frac{1}{x} < 1$$
, where $x > 0$.

OR

The slope of the tangent at the point (1, 1) on the curve xy + ax + by = 2 is 2, find a and b.

48. Evaluate:
$$\int \frac{\sin^{-1} \sqrt{x} - \cos^{-1} \sqrt{x}}{\sin^{-1} \sqrt{x} + \cos^{-1} \sqrt{x}} dx.$$

49. Evaluate:
$$\int \frac{6x+7}{\sqrt{(4-x)(5-x)}} dx$$
 $(x < 4)$.

50. Solve:
$$\frac{dy}{dx} + \frac{4xy}{x^2 + 1} = \frac{1}{(x^2 + 1)^2}$$
.

SECTION - E

Answer the following questions from 51 to 54, each carrying FIVE marks.

51. The lines x - 2y + 2 = 0, 3x - y + 6 = 0 and x - y = 0 contain the three sides of a triangle. Determine the co-ordinates of the orthocentre without finding the co-ordinates of the vertices of the triangle.

OR

Find the equation of the line passing through $(\sqrt{3},-1)$ if its perpendicular distance from the origin is $\sqrt{2}$.

52. Find:
$$\lim_{x\to 1} \left\{ \frac{25}{x^{25}-1} - \frac{15}{x^{15}-1} \right\}$$
.

- **53.** If $f(x + y) = f(x) \cdot f(y)$, then find f'(3); where $f(x) = \log(e + x)$, x > 0.
- **54.** Evaluate: $\int_{0}^{1} \sin^{-1}\left(\frac{2x}{1+x^2}\right) dx.$

OR

Prove that the area of the region bounded by the circle $x^2 + y^2 = 16$ and the Parabola $y^2 = 6x$ is $\frac{4}{3}(4\pi + \sqrt{3})$.