050(E)

(MARCH, 2008)

Time : 3.00 Hours]
[Maximum Marks : 100

Instructions :

1. All the questions are compulsory.

2. Write your answers according to the instructions given below with the questions.
3. Begin each section from a new page.

SECTION - A

Given below are 1 to 15 multiple choice questions, each carrying ONE mark.
Write the letter of the correct option (A) or (B) or (C) or (D).

1. Find the value of a, if $\mathrm{P}(2,3)$ is circumcentre of the triangle with vertices $\mathrm{A}(a, 6), \mathrm{B}(5,1)$ and $\mathrm{C}(4,6)$.
(A) -4
(B) 1
(C) 4
(D) 0
2. Find α if a line $x+y+1=0$ is converted in the form of a line $x \cos \alpha+y \sin \alpha=p$.
(A) $\frac{\pi}{4}$
(B) $\frac{3 \pi}{4}$
(C) $\frac{5 \pi}{4}$
(D) $\frac{7 \pi}{4}$
3. If the circle $x^{2}+y^{2}+4 x+\mathrm{K} y-4=0$ touches both the axes, then find out K .
(A) ± 8
(B) ± 4
(C) ± 2
(D) ± 1
4. Obtain the equation of a Parabola having focus $(0,-2)$ and the equation of directrix is $y=2$ and $(0,0)$ is the vertex of Parabola.
(A) $x^{2}=-8 y$
(B) $y^{2}=8 x$
(C) $x^{2}=8 y$
(D) $y^{2}=-8 x$
5. Find the radius of a director-circle of an ellipse $4 x^{2}+9 y^{2}=36$.
(A) $\sqrt{5}$
(B) $\sqrt{13}$
(C) $\sqrt{10}$
(D) 5
6. If $|\bar{a}|=10,|\bar{b}|=2$ and $\bar{a} \cdot \bar{b}=12$, then find $|\bar{a} \times \bar{b}|$.
(A) 12
(B) 14
(C) 16
(D) 18
7. Find magnitude of projection of vector $\bar{i}+\bar{j}+\bar{k}$ on \bar{j}.
(A) -1
(B) 0
(C) 1
(D) 2
8. Find the measure of the angle between plane $\bar{r}(1,2,1)=1$ and $\frac{x}{2}=\frac{y}{1}=\frac{z}{-1}$.
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{4}$
(D) None of them
9. Find $\lim _{x \rightarrow 0} \frac{(1+x)^{1 / 3}-1}{x}$.
(A) 0
(B) 1
(C) $1 / 3$
(D) None of them
10. Find $\frac{d}{d x}\left[\tan ^{-1}\left(\frac{1-\cos x}{1+\cos x}\right)^{\frac{1}{2}}\right] ; \pi<x<2 \pi$.
(A) 0
(B) $1 / 2$
(C) $-1 / 2$
(D) $\quad .1$
11. Find c applying Rolle's theorem to $f(x)=1+\sin x, x \in[0, \pi]$
(A) 0
(B) $\pi / 4$
(C) π
(D) $\pi / 2$
12. Evaluate : $\int_{1}^{\sqrt{3}} \frac{1}{1+x^{2}} d x$
(A) $\frac{\pi}{12}$
(B) $\frac{\pi}{6}$
(C) $\frac{\pi}{3}$
(D) $\frac{2 \pi}{3}$
13. Find the area of the region bounded by the curve $y=\tan x, X$-axis and the lines $x=0$ and $x=\pi / 4$.
(A) $\log 2$
(B) $\frac{3}{2} \log 2$
(C) $\frac{1}{2} \log 2$
(D) $2 \log 2$
14. Determine the degree of the differential equation $\frac{d^{2} y}{d x^{2}}+3\left(\frac{d y}{d x}\right)^{2}=x^{2} \log \left(\frac{d^{2} y}{d x^{2}}\right)$
(A) 1
(B) 2
(C) 0
(D) not defined
15. A stone falls from a tower of height 40 m . What will be its velocity, when it reaches on the land?
(A) $14 \mathrm{~m} / \mathrm{s}$
(B) $28 \mathrm{~m} / \mathrm{s}$
(C) $21 \mathrm{~m} / \mathrm{s}$
(D) $7 \mathrm{~m} / \mathrm{s}$

SECTION - B

Answer the following 15 questions. (No. 16 to 30)
Each question carries ONE mark.
16. Find the point A on the X -axis which is at the distance of 5 units from point $B(2,-3)$.
17. Obtain the equation of a circle which touches the X -axis, given that the equations of lines containing two of the diameters of the circle are $3 x-2 y-5=0$ and $x+y-5=0$.
18. Find the focus of a Parabola $y^{2}+6 y-2 x+5=0$.
19. The equations of the asymptotes of Hyperbola are $3 x+4 y=2$ and $4 x-3 y=2$. Find the eccentricity.
20. Find the unit vector in the direction of vector $(1,2,3)$.
21. Find the area of a Parallelogram, if its diagonals are $2 \bar{i}+\bar{k}$ and $\bar{i}+\bar{j}+\bar{k}$.
22. Represent the equation of line $\frac{3-x}{1}=\frac{2-y}{3}=\frac{1-z}{4}$ in the vector-form.
23. Find the length of a chord, cut by sphere $x^{2}+y^{2}+z^{2}-x-y-z=0$ on any axis.
24. If $f^{\prime}(x)=f(x)$ and $f(0)=1$, then find out the value of $\lim _{x \rightarrow 0} \frac{f(x)-1}{x}$.
25. Evaluate :

$$
\int x^{4 x}(1+\log x) d x, x>0
$$

26. Evaluate :

$$
\int\left(\frac{1+x}{x^{2}}\right) e^{-x} d x
$$

27. If $\int_{1}^{k} f(x) d x=47 ; \quad f(x)= \begin{cases}2 x+8, & \text { if } 1 \leq x \leq 2 \\ 6 x, & \text { if } 2 \leq x \leq k\end{cases}$ then find k.
28. Find the length of sub tangent of $y=e^{x / c}$.
29. If a distance of 150 cm . is travelled in 30 seconds with an initial velocity of $10 \mathrm{~cm} / \mathrm{s}$, find the constant accleration (retardation).
30. If the maximum horizontal range is 200 m , find the minimum velocity for that.

SECTION - C

Answer the following 10 questions (31 to 40).
Each question carries TWO marks. Do as directed:
31. A line passing through $(2,4)$ intersects the X-axis and Y-axis at A and B respectively. Find the equation of the locus of the mid-point of $\overline{\mathrm{AB}}$.
32. For the Parabola $x^{2}=12 y$, find the area of the triangle, whose vertices are the vertex of the parabola and the two end-points of its latus rectum.
33. Find the equation of Ellipse, which is passing through the points $(1,4)$ and $(-6,1)$.
34. Find the equation of Hyperbola for which the distance from one vertex to two foci are 9 and 1.

OR

Find the measure of angle between the asymptotes of hyperbola $3 x^{2}-2 y^{2}=1$.
35. If $\bar{x} \cdot \bar{y}=\bar{x} \cdot \bar{z}, \quad \bar{x} \times \bar{y}=\bar{x} \times \bar{z}$ and $\bar{x} \neq \overline{0}$, then prove that $\bar{y}=\bar{z}$.
36. If $\bar{a} \cdot \bar{b}=\bar{a} \cdot \bar{c}=0,|\bar{a}|=|\bar{b}|=|\bar{c}|=1$, then prove that $\bar{a}= \pm 2(\bar{b} \times \bar{c})$, where $\left(\bar{b}^{\wedge} \bar{c}\right)=\pi / 6$.
37. Find the equation of a sphere given that its centre is $(1,1,0)$ and that it touches the plane $2 x+2 y+z+5=0$.
38. If $y=\tan ^{-1}\left(\frac{5 x}{1-6 x^{2}}\right)$, then find $\frac{d y}{d x}$.

OR
$f(x)=[x]$. Is f continuous and differentiable at $x=1 ?$
39. Find the measure of the angle between the curves $y=\sin x$ and $y=\cos x, \quad 0<x<\pi$.
40. Obtain $\int \frac{\sqrt{\tan x}}{\sin x \cos x} d x ; \quad x \neq \frac{k \pi}{2}, \tan x>0$.

OR

Obtain $\int \frac{1}{\sin ^{4} x+\cos ^{4} x} d x$.

SECTION - D

Answer the following 10 questions ($\mathbf{4 1}$ to 50) .

Each question carries 3 (THREE) marks. Do as directed.
41. A is $(2 \sqrt{2}, 0)$ and B is $(-2 \sqrt{2}, 0)$. If $|\mathrm{AP}-\mathrm{PB}|=4$, find the equation of locus of P.
42. Find the equation of the incircle of the triangle formed by the following lines -

$$
x=2,4 x+3 y=5 \text { and } 4 x-3 y+13=0
$$

OR

Get the equation of the circle that passes through the origin and that cuts chords of length 5 on the lines $y= \pm x$.
43. Prove by vectors, that if the median on the base of a triangle is also altitude on the base, the triangle is isosceles.

OR

There are two forces $(2,5,6)$ and $(-1,2,1)$ that act on a particle and as a result of which the particle moves from $\mathrm{A}(4,-3,-2)$ to $\mathrm{B}(6,1,-3)$. Find the work done.
44. Prove that the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-4}{5}=\frac{y-1}{2}=z$ intersect each other and also find the point of intersection.
45. Obtain the equation of a plane that passes through the points $(2,3,-4)$ and $(1,-1,3)$, and that is parallel to X -axis.
46. Find $\lim _{x \rightarrow e^{3}} \frac{\log x-3}{x-e^{3}}$.
47. Prove that of all the rectangles having the same area, the square has minimum perimeter.

OR

$y=a x^{3}+b x^{2}+c x+5$ touches X-axis at $(-2,0)$ and the slope of the tangent where it meets Y -axis is 3 , then find a, b, c.
48. Evaluate :
$\int_{0}^{1} \frac{\log (1+x)}{(1+x)^{2}} d x$.
49. Find the area of the region bounded by the curve $y=2 \sqrt{1-x^{2}}$ and X -axis.

OR

Evaluate:
$\int_{2}^{3} e^{-x} d x$ as a limit of the sum.
50. Solve the differential equation.

$$
x d y+y d x=x y d x, y(1)=1
$$

SECTION - E

Answer the following 4 questions (51 to 54).
Each question carries FIVE marks. Do as directed
51. The equation of the line containing one of the sides of an equilateral triangle is $x+y=2$ and one of the vertices of the triangle is $(2,3)$. Find the equations of lines containing the remaining sides of the triangle.

OR

A is $(1,3)$ in $\triangle \mathrm{ABC}$ and the lines $x-2 y+1=0$ and $y-1=0$ contain two medians of the triangle. Find the co-ordinates of B and C .
52. Find $\lim _{x \rightarrow 1} \frac{x^{n}-1-n(x-1)}{(x-1)^{2}} ; x \neq 1$.
53. If $y=\log (1+\sin x)$, then prove that $e^{y} \cdot \frac{d^{2} y}{d x^{2}}+1=0$.
54. Evaluate :

$$
\int\left(\frac{2007 x+2008}{2008 x+2007}\right) d x
$$

OR

Evaluate :

$$
\int \frac{1}{\sin x+\sec x} d x
$$

